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ABSTRACT

Conditions are given which insure convergence for all Riemann-integrable
functions of interpolatory product integration rules and their companion rules
based on the Gauss, Radau or Lobatto points with respect to a generalized
smooth Jacobi weight function.

1. Introduction

Interpolatory (or polynomial) product integration is concerned with numerical
integration rules of the form

&) 10)= [ k@)@ = 0,110+ E. ()
where k € Li(a, b),

@ 0. ;)= 5, wall)f(zw),

the set of points

3) X={xu:i=hy.omsn="12. . M= l>m — L}

is specified in advance and the coefficients {w,; (k). i = l,,..., m,} are chosen so
that E,(f;k)=0 whenever f € ?,,.,, the set of all polynomials of degree
= m, — l,. An application of interpolatory product integration is in the numeri-
cal solution of Fredholm integral equations of the second kind [7].

In the present work, the interval of integration will be finite and without loss
of generality we shall assume it to be U =[—1,1]. X will be given by the set of
all Gauss, left Radau, right Radau or Lobatto points with respect to an
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admissible weight function on U, @ € A(U), where A(U) is the set of all
nonnegative functions @ on U such that w €L,(U) and o >0 on some
subinterval of U. For such a weight function, there exists a sequence of
orthonormal polynomials

(4) p"(x;w)=k"(w)z"+...; k"(w)>09 n=011,2""

such that

jl @ (X)pa(x; 0)pm (x; 0)dx = 8.

We shall denote the zeros of p,{(x;®) by x.(w), i=1,...,n
For any function f € R(U), the set of all Riemann-integrable functions on U,
we have the following sequence of integration rules:

©) [ wwrwa=or+Es
where

0 Of = 3 (i),

r, s €{0,1}, the %, are the zeros of

™ Grrss(x) =1+ x) (1= x)p.(x;®)
with

8) a(x)=(1+x)(1-x)You(x)E A(U)

and are ordered as follows:
(9) _IEx-n0<x-nl<'.'<fnn<fn.n+lEI

and E,f = 0 whenever f € #,,-1,.,+; . The coefficients fi.; are interpolatory and
are given by

10) P = (1 + %) (1 — %) s (@), i=1,...,n
where the u.(®) are the Christoffel numbers defined for any v € A(U) by

an) b )= 3 ()i 0)"
When r=1

2= [ w(2)1-x)dx = 3, full - £)
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and when s =1
1 n
2fhnner = f co(x)(1+x)dx - 2 i (14 X).
-1 i=

Note that
(12) Ew=xu(@), i=1,...,n

Q.f is the n-point Gauss rule with respect to the weight function @ when
r =5 =0, the (n + 1)-point left Radau rule, when r =1, s =0, the (n + 1)-point
right Radau rule, when r =0, s =1, and the (n + 2)-point Lobatto rule, when
r=s = 1. By [2, p. 126] all the coefficients fi.; are positive so that Q,f — I(wf)
for all f € R(U) ([2, p. 130]). Consequently, by the theorem in [2, p. 131] which
also holds for weighted integrals [6], Z.o and fi...1— 0. Hence the modified
integration rules

3 =S 7 f(5)=S i (&) f (X0 (@)
(13) an— “ l"m’f(xnl')_i; (1+¢ni (6))'(1—::,- (a-)))s

converge to I(wf) for all f € R(U). Note that for the Gauss case, r = s =0,
Q.f = Q.f.

2. Product integration. Preliminaries and theorems

For any o € A(U) and any pair r, s € {0,1} we define the set X of Gauss,
Radau or Lobatto points by

(14) X’={f,..»:i=1—r,...,n+s;n=1,2,...}.

Then the interpolatory product integration rule determined by X is given by

(15) Q(fsk)= X W (k)f (%)

=1-r

and is exact for all f€ P, ...,. If L,(f;x) is the Lagrange interpolation
polynomial of degree n+r+s—1 interpolating to f(x) at X., i=
1-r...,n+s, then [2, p. 75]

(16) . (f; k)= j ’1 k()L (f; % )dx.

Since in our case

n+s

a7 i"(f;x)=.-.2., L (x) (%)



Vol. 56, 1986 PRODUCT INTEGRATION RULES 69

where

T (vY= Gnsres (X)
%) L) = G2l o)
we have that
(19) Woi (k) = L k(x)T; (x)dx.

Now, for a product integration rule Q,(f;k) based on the zeros x,;(v) of
po(x; v) where v € A(U), it has been shown [3, 8] that

(20) Wai (k)= s (0)SK1(v; % (v)),  i=1,...,n

where Sx_i(v; x) is the nth partial sum of the Fourier series in the orthonormal
polynomials p;(x;v) for the function K defined by

1) K(x) = k(x)/o(x).
Thus

2) SE(vix)= 3, b1 (x;0)
where

b;‘:f v(x)K(x)p;(x;v)dx=f_ll k(x)p;(x; v)dx.

We now show that in our case

(23) W k)= GuSK_(@3%,), i=1,...,n
where
24) K(x)=k(x)o(x)=k(x)1 +xy(1—-x)/a(x).

In general, for i=1,...,n

R _ ! k(X)qn+r+s (x)
Wi (k)= J_l (X = % )G+ s (i) dx

=(1+ %) (- %)™ f_ll k()(U+x) (L= )P (x:8) g

(x — X )P:-(x-m' 5 a_’)
=(1+ &) (1= %) Wi (K (x) (1 + x) (1 = x)°)
= (14 )" (1= %) " i (@) S 5-1(@ 5 X0 (@))

= ﬁnisf—l(a-, > fnl' )-
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In this chain, we have used (19), (18), (7), (20), (24), (10) and (12).

We are now almost ready to state our theorem on the convergence of Q, (f; k)
to I(kf). This theorem assumes @ to be a generalized smooth Jacobi weight
function studied by Nevai [4] and Badkov [1] and generalizes Theorems 2 and 3
in [8]. The generalized smooth Jacobi weight function is defined as follows:

DEFINITION. @ is a generalized smooth weight function, w € GSJ=
GSJ(a,B), if o can be written in the form

3) o(x)= H)(1-x) (1 + 2 ] 15 - "

where ~1<<---<t. <L, @ B, yv>-1,j=1,...,m=z0, Hx)>0o0n U,
H € C(U) and the modulus of continuity of H, w(H, t), satisfies

1
J’ t"'w(H, t)dt <,
0

Since the theorems in [8] deal not only with the convergence of Q,(f; k) to
I(kf) but also with the convergence to I(| k|f) of the companion rules

) LAGEREN TN

=]-r

our theorem will aso include this feature. For the practical implications of the
convergence of the companion rules, see [8].
We now state our main result.

THEOREM 1. Let w € GSJ(a,B) and let r,s €{0,1}. If for some p>1, k
satisfies

@7 j—ll lk(X)(l—x)A(l-i.x)Biljl |x — 4] de<oo

where
A = —max[Q2a +1-25)/4,0],
B = —max[(2B8 +1—2r)/4,0],
C = —max[y;/2,0], j=1,...,m,
then Q. (f; k)— I(kf) and | Q. |(f; k)= I(|k|f) as n > = for all f € R(U).

We shall prove this theorem in Section 3. For the moment, we note that we
can state an equivalent theorem by looking at the problem from another point of
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view. Starting with any orthonormal polynomial p, (x; v) where v € GSJ(a, B),
we can define an interpolatory product integration rule based on the zeros of
(1+x) (= x)p.(x; v). If the weight function (1 + x) (1 — x) v (x) € A(U), we
are back to our previous case with @(x)= v(x). In this case we have the
following equivalent formulation of Theorem 1.

THEOREM 1'. Let r,s €{0,1} and let v € GSJ(a,B) be such that a —s,
B—r> —1. Let Q.(f; k) be the interpolatory product integration rule based on the
zeros of (1+x)(1—x)'p.(x;v) and let k satisfy

1 m
f \k(x)(l—x)"'(Hx)"'Hlx—t,»lcf"dx<o°
-1 j=1

for some p > 1, where
A'= —max[(2a +1-4s)/4,0],
B'= —max[(2B +1—4r)/4,0],
Ci= —max{y,/2,0}, j=1,....,m.
Then Q. (f; k)— I(kf) and | Q. |(f; k) I(|k|f) as n > for all f € R(U).

From this formulation, which follows from Theorem 1 by replacing a@ by @ — s
and B by B —r, we see that if we have a set of zeros of an orthonormal
polynomial p,(x;v) with v € GSJ(a, B) which we wish to use for product
integration, then provided that (1+x)"(1—x)"v(x) is admissible for some
r+s>0, we can relax the condition on k needed to insure convergence by
adjoining one or both endpoints to the set of zeros. Alternatively, if we have a
fixed k, we can extend the range of values of a and B for which we have
convergence by 2 at the upper end at the cost of reducing it by 1 at the lower end.

In case (1+ x)™"(1 — x)’v(x) is not admissible, we may still have convergence
of Q.(f;k) to I(kf). This was shown in [5S] where we proved that if v €
GSJ(a, B), then Q. (f; k)— I(kf) for all f€ C(U) if

(1) k€ Llog" L(U),

(2) (1- x)—s+1/4(1 +x)—r+1f4v1/26 L;(U),

B) k(x)Q—-x)y""1+x)y "o € L (V).

Thus,if r=1and ~3<B =0ors=1and —3< a =1, we have convergence
for all fe C(U) if k satisfies conditions (1) and (3). However, the weight
function (1+ x)™"(1 — x)’v(x) is not admissible. It is an open question whether
we have convergence for all f € R(U) in these circumstances. Similarly, the
question of the convergence of the companion rule is not settled in this case.
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3. Proof of Theorem 1

Much of this proof is modelled on that of Theorem 2 in [8] to which we refer
the reader for some of the details.
We shall prove the theorem for the modified rules

8) 0.(f5 k)= 3, #u(0)f(5u)
and
) [ATASEDAEAIEN

Then, since when r =1

2Wao(k)=I((1- x)k)— Q. (1 - x; k)
and when s =1

2Wnnni(k)=I(1+ x)k)— Q,(1+x; k)

it follows from the convergence of O, (f; k) that Wao(k), W,n.i(k)—0 so that
Q.(f; k)— I(kf) and | Q, |(f; k)= I(|k|f) as n — for all f € R(U).

As in [8], we prove our result for the modified companion rule (29) since the
result for (28) may be proved by a parallel argument, differing only in the
deletion of some of the absolute value signs. Assume now that f € R(U) so that
|| is bounded on U with least upper bound M(f) and let k' € L,(U). Then we
have (cf. (3.1) in [8])

10.175 6= IAKIDI= M) [ 1)~ ko)l dx+ M) 3, 1 = )
(30) n
+|;lwn.-(k')lf(xm»)—r(lk'lf) :
Now, let K' be a polynomial of degree m and define
(31) k'(x)= K'(x)o(x).

From the definition of S&_,, it follows that for n > m we have
S (@;x) = K'(x).

Hence, by (23), w.(k')= g.K'(xx), i =1,...,n for all n > m. Inequality (30)
now becomes, for n > m,
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10,166 k)~ 1k 1A= M) [ 1K)~ Kol o)

+ M(f),_il i I Sf:lxl(a;;ini)l
(32) +0.(IK'|))- Iw|K'|f)|

where Q, is given by (13).
We now show that if S € #,-;, then

(33) A.(sh=ClSh.

for some positive constant C, where, for any p, 1 =p <,

Ishe =([ 1ocIgras)

This follows from the result in Nevai [4, Eq. 2.4], a special case of which states
that for any v(¢) of the form v(t)=(1-x)"(1 +x)’,

n 1

S (@00 (@) St @N]= C [ ISWIo0)a 0
Setting @ = —r, b = — s and using (8), (10) and (12) yields (33). Hence
(34) 3, i | SEK (@5 £)] = CI S e
where S, = S._1(@; x).

If we now define u(x) by
65) w(x)= - e @+ 0 [ - g 1o
i=

then (27) and (24) imply that || K ||,. < for some p > 1. We now choose p’ so
that p > p' > 1 and so that p' be as close to 1 as we need. Then by the Holder
inequality

K-K' K-K'
1855 e = Coll Sa

We now use a result by Badkov [1] on the mean convergence of generalized
smooth Jacobi series. This states that if

o) ===y @+xp [Ilx-gp
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then sufficient conditions for the mean convergence in the L, norm of
v(x)S,.-1(@; x) for all g such that || g||,, < for some g >1 are that

1 a+s+1 . la+s+1)
’a+q ——2 '< m(4,———2 ,

’b+-}1-—L——+2r+1l<min (%,L_+2r+1>’

¢ +1/qg <min(y; +1,y;/2+1), j=1...,m

Now these conditions are fulfilled for a= A +a, b=B+8 and ¢;=C, + v,
j=1,...,m and q = p’ sufficiently close to 1. Hence, we have that

1S5l u= CAK = K'pu= G K = K|
so that
0. (IS5 )= Gl K = K |-
Similarly, by the Holder inequality,

[ 1K)~ K@) wx)dr = GIK - K.

Since [|K||,. <, there exists K'E€ P, for some m such that |K — K'|,. is
sufficiently small. Finally, since O, (|K'|f)— I(w|K'|f) as n— for all f€
R(U), we are through.
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