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ABSTRACT 

Conditions are given which insure convergence for all Riemann-integrable 
functions of interpolatory product integration rules and their companion rules 
based on the Gauss, Radau or Lobatto points with respect to a generalized 
smooth Jacobi weight function. 

1. Introduction 

Interpolatory (or polynomial) product integration is concerned with numerical 

integration rules of the form 

(1) I ( k f ) -  k(x) f (x)dx = Q ~ ( f ; k ) + E . ( f ; k )  

where k E Ll(a, b), 
m n 

(2) O. (f; k) = i~. w,,i (k )f(x,.), 

the set of points 

(3) X={xn~:i=ln . . . . .  m . ; n = l , 2  . . . .  ; m . + , - l n ~ > m n - l n }  

is specified in advance and the coefficients {w,~ (k): i = l~,..., m,} are chosen so 

that En (f; k ) =  0 whenever [ E  ~,,.-t., the set of all polynomials of degree 

_-< m~ - In. An application of interpolatory product integration is in the numeri- 

cal solution of Fredholm integral equations of the second kind [7]. 

In the present work, the interval of integration will be finite and without loss 

of generality we shall assume it to be U - [ -  1, 1]. X will be given by the set of 
all Gauss, left Radau, right Radau or Lobatto points with respect to an 
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admissible  

nonnega t ive  funct ions oJ on U such 

subinterval  of U. For  such a weight  

orthonormal polynomia l s  

(4) p.  (x ; o~) = k. (~o)z" + ' "  ; 

such that 
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weight  funct ion on U, oJ E A(U), where  A ( U )  is the set  of all 

that  oJELI(U) and ~ o > 0  on some  

function,  there  exists a sequence  of 

k, (~o)> 0, n = 0 , 1 , 2 , . . .  

= 8 . , . .  
1 

We shall deno te  the zeros  of  p.  (x ; o~) by x., (oJ), i = 1 . . . . .  n. 

For  any funct ion f E R (U) ,  the set of all R iemann- in t eg rab le  funct ions on U, 

we have  the following sequence  of in tegrat ion rules: 

(5) 

where  

(6) 

f_' o~(x)f(x)dx = O.f + E.f 

n+s 
o . f  = 

r, s E {0, 1}, the i.~ are the zeros of 

q.+,+. (x)  = (1 + x) ' (1  - x)'p. (x;  o3) (7) 

with 

(8) oS(x) = (1 + x) ' (1  - x)'oo(x)E A(U) 

and are o rde red  as follows: 

(9) - 1 -= 2 . o <  2.~ < • • • < £. .  < £...+~ -= 1 

and E.[ = 0 wheneve r  [ E ~2.-~ . . . . .  The  coefficients/2.i  are in te rpo la tory  and 

are given by 

(10) /2., = (1 + ~. , )- ' (1  - X.,)-'/x., (~ ) ,  i = 1  . . . . .  n 

where  the g.~(~5) are the Christoffel  number s  defined for  any v E A(U) by 

tl--I 
(11) I.~.,(v) = k~=o pk (x.,(v); v) -2. 

W h e n  r = 1 

f_l I n 2/2.0= o~(x)(1- x)dx - ~ /2.,(1- £.,) 
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and when s = l  

Note that 

(12) 
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2/i,~n+~ = . to(x)(l+x)dx- /2~,(1 + ~.,). 

~., = x~, (o3), i = 1 . . . .  , n. 

Q.f is the n-point Gauss rule with respect to the weight function to when 

r = s = 0, the (n + 1)-point left Radau rule, when r = 1, s = 0, the (n + 1)-point 

right Radau rule, when r = 0, s = 1, and the (n + 2)-point Lobatto rule, when 

r = s = 1. By [2, p. 126] all the coefficients/i., are positive so that Q f f ~  I(to[) 
for all f E R (U) ([2, p. 130]). Consequently, by the theorem in [2, p. 131] which 

also holds for weighted integrals [6], /2~o and /Z,~+~ ~ 0. Hence the modified 
integration rules 

(13) 
~ g. ,  (os)/(x., (o~)) 

O f f  = /z.,f(~n,) = (1 + x., (o3)),(1 _ x., (o3)), 

converge to I(tof) for all f E  R(U). Note that for the Gauss case, r = s =0 ,  

O d  = od.  

2. Product integration. Preliminaries and theorems 

For any to EA(U)  and any pair r,s E{0,1} we define the set .~ of Gauss, 

Radau or Lobatto points by 

(14) .~ = {~,: i = 1 - r, . . . .  n + s; n = 172 . . . .  }. 

Then the interpolatory product integration rule determined by X" is given by 

n + s  

(15) Qn (f; k) = ,=~-r fin, (k)f(~n,) 

and is exact for all f E ~n-t÷.. , .  If ff.n([;x) is the Lagrange interpolation 

polynomial of degree n + r + s - 1  interpolating to f(x) at ~.,, i =  

1 - r, . . . .  n + s, then [2, p. 75] 

(16) O. if; k) = ffl k(x)ff., if; x)dx. 

Since in our case 

n + s  

(17) /.~. if ;  x) = ,.~_, ~ (x)f(£. ,)  
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where 

(18) 

we have that 

(19) 

q.+..(x) 
(x) = (x - x-~,)q" . . . .  (e.,) 

ff. ,(k) = ~/~ k(x)~(x)dx .  

Now, for a product integration rule Q. (f; k) based on the zeros x.~ (v) of 

p. ( x ; v ) w h e r e  v E A ( U ) ,  it has been shown [3, 8] that 

(20) w.,(k) = ll.,(v)SX._,(v;x,,(v)), i = 1 . . . . .  n 

where S~_,(v; x) is the nth partial sum of the Fourier series in the orthonormal 

polynomials pj(x; v ) f o r  the function K defined by 

(21) r ( x )  = k(x) /o(x) .  

Thus 
n - 1  

(22) St ._dr;x)  = j~  b~pi(x; v) 

where 

f l  P 
1) )dx. 

| [ 

We now show that in our case 

(23) ~ ,  (k)  = t2.,S ~- , (~  ; ~n,), i = 1  . . . .  , n  

where 

(24) K(x )  = k(x) / to(x)= k(x)(1 ~-x) ' (1 -  x) ' /~ (x ) .  

In general, for i = 1 , . . . , n  

~ k(x)q.+,+~(x) dx 

= (1 + x-~,)-'(1 - e . , ) -s  I~ 
k(x)(1 + x)' (1  x )Spn (x;,~) 

, (x - ~ , ) p ' ( ~ ,  ; ~ )  dx 

= (1 + X,,i)-r (1 - -  .~,,i)-'Wni (k (x ) (1  + x) '(1 - x ) ' )  

= (1 + ~,,)-' (1 - ~.,)-'/~,, (t~)S.r-~(~; x., (t~)) 

= ~ . , s G ( , ~ ;  ~.,). 
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In this chain, we have used (19), (18), (7), (20), (24), (10) and (12). 

We are now almost ready to state our theorem on the convergence of 0 .  ~ ;  k) 

to I(kf). This theorem assumes to to be a generalized smooth Jacobi weight 

function studied by Nevai [4] and Badkov [1] and generalizes Theorems 2 and 3 

in [8]. The generalized smooth Jacobi weight function is defined as follows: 

DEFINITION. to is a generalized smooth weight function, to E G S J -  
GSJ(a, p), if to can be written in the form 

(25) to(x) = H(x) (1  - x)"(1 + x) ° ~ Ix - tj I v' 
j=l 

where - l < t l < ' " < t m < l ,  a, /3, y j > - l , j = l  . . . . .  m=>0, H ( x ) > 0 o n  U, 

H E C(U) and the modulus of continuity of H, w(H, t), satisfies 

o ~ t- 'w(H,t)dt  < oo. 

Since the theorems in [8] deal not only with the convergence of Q. (/; k) to 

I(k[) but also with the convergence to 1(1 k If) of the companion rules 

n+$ 
(26) [ O . [ ( / ; k ) =  ~ [ff,.~(k)[f(x.,), 

i ~ l - r  

our theorem will aso include this feature. For the practical implications of the 
convergence of the companion rules, see [8]. 

We now state our main result. 

Let to E GSJ(a,/3) and let r, s E {0, 1}. If for some p > 1, k THEOREM 1. 

satisfies 

(27) 

where 

j_' [ k ( x ) ( 1 - x ) a ( l + x ) a  ]~I P Ix - t i [  C, ax<oo 
j=l 

A = - max[(2a + 1 - 2s)/4,0], 

B = - maxl(2/3 + 1 - 2r)/4,0], 

Q = - max[3,j/2,01, j = 1 . . . . .  m, 

then O,(f;k)---~ I(kf)  and l O . l ~ ; k ) ~  I ( l k l f )  as n---~oo for all f E R ( U ) .  

We shall prove this theorem in Section 3. For the moment, we note that we 

can state an equivalent theorem by looking at the problem from another point of 
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view. Starting with any o r thonormal  polynomial  p. (x ; v)  where  v E GSJ(a,/3), 
we can define an in te rpola tory  product  integrat ion rule based on the zeros of 

(1 + x) ' (1  - x)'p. (x ;  v). If the weight funct ion (1 + x) - ' (1  - x) - ' v (x )E  A (U), we 

are back to our  previous case with o3(x)=  v(x). In this case we have the 

following equivalent  formula t ion  of T h e o r e m  1. 

THEOREM 1'. Let r, s E {0, 1} and let v E GSJ(a,/3) be such that a - s, 

/3 - r > - 1. Let Q, (f ; k) be the interpolatory product integration rule based on the 
zeros o[ (l + x ) ' (1 -  x)'p.(x; v) and let k satisfy 

j'~ [ k (x) (1  x)A'(1 

for some p > 1, where 

+ x)"' H Ix - t, lC;I " dx < 

A '  = - max[(2a  + 1 - 4s)/4, 0], 

B '  = - max[(2/3 + 1 - 4r)/4,  0], 

C~ = - max{ y,/2,  0], j = 1 . . . . .  m. 

Then Q . ( f ; k ) ~  I(kf)  and I Q . l ( f ; k ) ~  I ( I k l f )  as n ~ o o  for all f E R ( U ) .  

From this formulat ion,  which follows from T h e o r e m  1 by replacing a by a - s 

and /3 by / 3 - r ,  we see that if we have a set of zeros of an o r thonormal  

polynomial  p, (x ; v)  with v ~GSJ(a ,  f l )which  we wish to use for p roduc t  

integration,  then provided that (1 + x ) - ' ( 1 - x ) - ' v ( x )  is admissible for  some 

r + s > 0, we can relax the condit ion on k needed  to insure convergence  by 

adjoining one  or both  endpoints  to the set of zeros. Alternat ively,  if we have a 

fixed k, we can ex tend  the range of values of a and /3 for  which we have 

convergence  by 2 at the upper  end at the cost of reducing it by 1 at the lower end.  

In case (1 + x) - ' (1  - x)-~v(x) is not  admissible, we may still have convergence  

of Q . ( f ; k )  to I(kf). This was shown in [5] where  we proved that if o E 

GSJ(a, fl), then Q . ( f ;  k)--~ I(kf)  for all f E C(U) if 
(1) k E L log + L(U),  
(2) (1 - x)-S+'4(1 + x)- '÷"v m E L , ( U ) ,  

(3) k(x) (1  - x) ' - ' / ' (1  + x)'-'4v -'n E L,(U). 

Thus,  if r = 1 and - ½ < /3  _-__ 0 or s = 1 and - ½ < a < 1, we have convergence  

for all f ~  C(U) if k satisfies condit ions (1) and (3). However ,  the weight 

funct ion (1 + x) - ' (1  - x)-'v(x) is not  admissible. It is an open  quest ion whe ther  

we have convergence  for all f E R ( U ) i n  these circumstances.  Similarly, the 

quest ion of the convergence  of the companion  rule is not  sett led in this case. 
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3. Proof of Theorem 1 

Much of this proof is modelled on that of Theorem 2 in [8] to which we refer 

the reader for some of the details. 

We shall prove the theorem for the modified rules 

n 

0 . ( f ;  k ) =  ~ ~.,(k)f(~.,) (28) 

and 

(29) 

Then, since when r = 1 

and w h e n s = l  

n 

10. [(f; k)= ~ I~'.,(k)lf(e.,). 

2ff.o(k) = I((1 - x ) k ) -  O. (1 - x; k) 

2~,~.+~(k) = I((1 + x )k ) -  O. (1 + x; k) 

it follows from the convergence of 0 .  (f; k) that ff.0(k), ~ . + ~ ( k ) ~ 0  so that 

Q.(f;k)->I(kf)  and [O.l(f;k)--, ,I(lklf  ) as n - ~  for all f E R ( U ) .  
As in [8], we prove our result for the modified companion rule (29) since the 

result for (28) may be proved by a parallel argument, differing only in the 
deletion of some of the absolute value signs. Assume now that f E R (U) so that 
Ifl is bounded on U with least upper bound M(~) and let k 'E L~(U). Then we 
have (el. (3.1) in [8]) 

O. I(f; k ) -  I([ k [f)l <= M(f) J-I' I k'( x ) -  k(x)[ dx + M(f) ,=1 ~" ]~''' (k - k')[ I I 
(30) 

Now, let K' be a polynomial of degree m and define 

(31) k'(x) = r'(x)to(x). 

From the definition of S.r-,, it follows that for n > m we have 

s~'_,(~; x)  = r'(x). 

Hence, by (23), ff . ,(k ')= #.,K'(x.,), i = 1 . . . . .  n for all n > m. Inequality (30) 

now becomes, for n > m, 
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fl 
I I Q. I(f; k ) -  I(I k tf)l <- M(f)  )1 [K'(x)-  K(x)l oJ(x)dx 

+ Mq) ~ a., I s.~_-: (a; e.,)l 
i = l  

(32) 
+ 1 0 .  (I K ' l f ) -  I(oJ I r ' l f ) l  

where O. is given by (13). 

We now show that if S E ~ n - 1 ,  then 

(33) 0.(I s I)---- cllsll,,° 

for some positive constant C, where, for any p, 1 --- p < 0% 

l ip 
= 

This follows from the result in Nevai [4, Eq. 2.@ a special case of which states 

that for any v(t) of the form v(t) = (1 - x)a(1 + x) b, 

i~.,(a)v(x.,(~))lS(x.,(~)) I <-_ C IS(t)lv(t)~(t)dt. 

Setting a = - r, b = - s and using (8), (10) and (12) yields (33). Hence 

n 

~,.,Is.-, (~,;e.,)l--<clls.-, I1,.° (34) ,_~ - K-x, - K-K' 

where S._,--- S ._ , (6 ;x) .  

If we now define u (x) by 

m 

(35) u (x )  = (1 - x)a +a (1 + x)n+a ~ I x - t, I c,+~' 

then (27) and (24) imply  that II K lip.. < oo for  some p > 1.. We now choose p '  so 

that p > p'  > 1 and so that p '  be as close to 1 as we need. Then by the H61der 

inequality 

K - K '  K - K '  IIs.-, I1,,° --< c, IIs._, I1..... 

We now use a result by Badkov [1] on the mean convergence of generalized 

smooth Jacobi series. This states that if 

v ( x ) = ( 1 -  x)"(l + x) b [-I Ix - t i l  c~ 
i=1 
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then sufficient conditions for the mean convergence in the Lq 

v(x)$._~(~;x) for all g such that JlglJ.v <oo for some q > 1 are that 

a + l  a + s + l  
q 2 I<min(~ ,  a + s + l )  2 

q 2 < rain , 2 ' 

c j + l / q < m i n ( % + l , % 1 2 + i ) ,  j = l , . . . , m .  

norm of 

N o w  these conditions are fulfilled for a = A + a, b = B +/3  and cj = C~ + y~, 

j = 1 , . . . ,  m and q = p' sufficiently close to 1. Hence, we have that 
K - K '  ~ t t IIs.-, lip,,=- c2ll K - K lip,,.<= C~tIK- K lip,. 

so that 

O.(IS~--U'I)<= C, IIK- K'IIp,.. 
Similarly, by the H61der inequality, 

~] l K ' ( x ) -  K(x)l  oJ(x)dx <-__ CsItK - K'llp. .. 

Since UKll ,. < oo, there exists K ' E  ~ ,  for some m such that IlK- K'tlp,. is 

sufficiently small. Finally, since (~. (J K'JD-* I(~, I K'[I[) as n--> oo for all [ E 

R (U) ,  we are through. 
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